Great Bay Nitrogen Issue

Presented by the Great Bay Municipal Coalition

Dover, Exeter, Newmarket, Portsmouth, and Rochester

Dean Peschel 603-781-5931 dean_peschel@yahoo.com

Great Bay Municipal Coalition Objectives

Protect Estuary resources

- Understand the science
- Invest in solutions that address cause of resource degradation to the extent necessary

History of Nitrogen Issue NH Estuary Program TAC 2005-2008

Concluded N not cause eelgrass loss

.2009 NHDES Numeric Nutrient Criteria

- Concluded N was the cause of eelgrass loss
- Established a .3 mg/l TN water column transparency based WQ standard to protect eelgrass
- 2009 NHDES declared Great Bay Impaired
- 2011 EPA issues draft NPDES permits
 - limits of technology (3 mg/l)

Excess Nitrogen stimulates phytoplankton growth (chl-a)

Excess phytoplankton in the water reduces light transparency

Reduced light transparency impacts eelgrass

Contributions to Kd (PAR) measured at the Great Bay Buoy

(From Morrison et al, 2008)

Upper Piscataqua River Measured Chla and Kd (2003-2008)

Macroalgae

Great Bay Macroalgae studies

- 2, 1980's UNH Studies show macroalgae not a problem
- 2008 UNH Study shows increase in macroalgae at the five study sites

Nutrient Criteria

Sets .34- .38 mg/l WQ standard to prevent macroalgae proliferation (10-20% below 2008 TN level of .42mg/l)

Hydroqual analysis

NPDES TN permit limit of 8 mg/l at WWTP's will lower DIN system loading in GB to well below 1990's levels

Macroalgae mats (Ulva and Gracilaria) in Great Bay near Lubberland Creek. Photo credit: Jeremy Neddleton (2008).

Figure 12. Estimated Current and Future NPS and PS DIN Loads (April-May 1990-2005).

Figure 11. Estimated Current and Future NPS and PS DIN Loads (June-September 1990-2005).

Actual Precipitation Average Precipitation Trend

L

Why All The Fuss?

Times have changed

Funding of WWTP upgrades 100% local users

Stakes are high

* Coalition Wastewater plant upgrade costs

3 mg/l \$588,000,000 over 20 years

8 mg/l \$364,000,000 over 20 years

Delta \$224,000,000 over 20 years

* Applied Economic Resources Report 2011

WWTP estimated costs to reduce N

Dover 2.8 mgd 96 tons N/yr

Limit (mg/l)	% red.	Tons red.	20yr Cost	Cost/ton
8 (6)	73% 86%	70 83	\$36.4 mil \$94.9 mil	
	13%	13	\$58.5 mil	\$225K

Preliminary Hydrodynamic Model Grid

Computed Increase in Great Bay Estuary TN and DIN Levels due to Dover WWTP Discharge

Adaptive Management Proposal

- Coalition WWTP's discharging to the estuary
 8 mg/l N permit limits; Operational within 5 yrs
- Invest in WQ and Habitat monitoring & research
- Invest in habitat restoration projects
- Stormwater improvements
- Septic system contribution reduction strategy
- Fertilizer use controls
- Stream and wetland buffers
- Support land conservation

Adaptive Management Proposal

- WWTP's contributing to Great Bay
 - 8 mg/l N seasonal permit limits for 10 yrs
 - Operational within 5 yrs or sooner
 - Assess system improvements during permit
- Invest in WQ and Habitat monitoring and research
- Invest in habitat restoration projects
 - Oyster restoration and aquaculture
 - Eelgrass restoration

Adaptive Management Proposal

- Stormwater improvements
 - Adopt consistent stormwater regulations
 - Adopt watershed wide use of BMP's
 - Partner with UNH to develop effective BMP's
- Septic system contribution
 - Develop and implement a strategy- NHDES
- Fertilizer use controls

Benefits of Adaptive Management Proposal

- Provides significant nitrogen reduction
- Addresses point and non point sources
- Funds needed monitoring, research, and restoration
- Avoids legal appeals

Wastes financial resources

Delays implementation of reductions

Additional Efforts

Southeast Watershed Alliance

Implementation of regional water related projects

42 NH Communities

Town of Durham

Integrated watershed permit – combined wastewater and stormwater permiting

Capital Investment in Wastewater

Portsmouth
Dover
Exeter

\$41 million \$20 million \$10 million

Conclusions

- Nitrogen is not the cause of reduced water column transparency in the estuary
- Therefore .3 mg/l TN transparency based WQ standard is unjustified
- Lack of available Macroalgae research in GB estuary
- Hydroqual analysis shows 8 mg/l TN permit limit @ WWTP's reduce system DIN load well below 1990's levels
- Coalition Adaptive Management proposal reduces point and non point sources, invests in monitoring and research, & supports restoration efforts

Conclusions

- Coalition communities committed to protecting the estuary
- Coalition is ready to implement the proposed Adaptive Management proposal
- Coalition insists we invest wisely to avoid wasting resources
- Success will require a cooperative partnership with all the stakeholders

Eelgrass Coverage

